If you can believe that hummingbirds evolved from a dinosaur like *Tyrannosaurus rex*, apparently you can believe anything. Evolutionists have gone so far down Alice’s rabbit hole that they now think lobsters are closely related to cockroaches.

The next time you are about to dig into a freshly steamed lobster for dinner, think “cockroach,” or better yet, “dragonfly.” A decade of genetic data and other evidence has persuaded most researchers that insects and crustaceans, long considered widely separated branches of the arthropod family tree, actually belong together. Now they are exploring the consequences of the revision, which traces insect ancestry to certain crustaceans. “When I think about traits in insects, I now have a context for where they came from,” says Jon Harrison, an evolutionary physiologist at Arizona State University, Tempe, who has spent 25 years investigating insect respiration. “It’s a total change.”

Do you really want to know the details? We didn’t think so! Instead, let’s take this opportunity to expand upon a general principle that we didn’t have room for in last month’s feature article about bird DNA, despite its extended length.

This all fits together because we want to examine the illegitimacy of the notion that one can establish a pedigree based on genetic similarity. It doesn’t matter whether we are talking about insects or birds. The issue is whether or not DNA analysis can tell us anything about biological descent—especially if it flies in the face of rational thought.

Vocal Learning Revisited

Last month we just touched on an evolutionary problem so serious that it was addressed in depth by one of the papers produced by the Avian Phylogenetics Project. It had to do with the fact that some birds use sound to communicate, and some don’t.

Pet parrots, of course, can learn to repeat words taught to them by their owners. Alex the Parrot, the prime subject in the Avian Learning Experiment, apparently learned the meaning of words, and could carry on a conversation equivalent to that of a young child.

Some people question whether or not Alex really understood what he was saying. He might have just been repeating sounds. But dogs understand what commands (such as, sit, stay, and roll over) mean. (Cats probably know what these commands mean, too—they just don’t care.) Dog owners can tell the difference from their dog’s “I need to go out!” bark from their “There’s an intruder in the backyard!” bark. So, it certainly seems reasonable that Alex and the scientists understood each other.

From time to time hummingbirds have built nests in the trees around our house, resulting in avian property disputes. Although I don’t speak

3 http://en.wikipedia.org/wiki/Alex_the_parrot
hummingbird, I certainly recognize their trash talk during aerial dogfights, and take cover whenever I hear it.

Some songbirds have well-documented mating calls—but other birds don’t. Evolutionists formerly believed that vocal learning is such a complex behavior that it could only have evolved once, and all vocal learners inherited the ability. When they constructed their mythical evolutionary tree, parrots were nowhere near hummingbirds. So, they came to the conclusion that parrots and hummingbirds independently evolved vocal learning.

A problem with that explanation surfaced when they discovered that all vocal learning birds have virtually identical genes which non-learners don’t have. Furthermore, humans have those same communication genes, which apes don’t have.

They try to explain this remarkable coincidence with “convergent evolution.” That is, vocal learning is such a difficult and unique characteristic that only one set of genes is capable of doing it. Therefore, all these different, unrelated species accidentally stumbled on the exact same solution to the problem.

Pinewood Derby Convergence

Consider this analogy: All across America the Boy Scouts compete in the Pinewood Derby. They carve blocks of wood into model cars to see which one will roll down an inclined track the fastest. The cars all look very different. Some are expertly carved. Some are very crude. Some are painted well. Others are not. Despite their many differences, all the cars have the same size wheels, spaced the same distance apart. Why?

Yes, the official rules define these things—but even in the absence of these rules, all the cars would have the same size wheels, with the same spacing, because they wouldn’t fit on the track if they didn’t. The track constrains the size and spacing of the wheels.

The evolutionists’ argument is that physical constraints force certain genetic characteristics—and they are right about that.

You Can’t Have it Both Ways

Here’s where the evolutionists go wrong. Whenever two similar species have similar genetics, they claim it is proof of a common ancestor. For example, the fact that human DNA is similar to chimpanzee DNA is claimed as proof of a common ancestor. But, when humans and hummingbirds have identical genes (which apes lack) it is claimed to be proof that the same genes can evolve independently. Evolutionists aren’t consistent. Similar DNA is either proof of a common ancestor, or it isn’t.

Now, because evolutionists have recognized that lobsters and dragonflies have similar genetics, they are ready to redraw their mythical evolutionary tree to bring them closer together! Why not say it is just a case of convergent evolution? There is no logical consistency.

The mythical evolutionary tree is based on opinions that change from day to day. It isn’t based on unchanging facts.

Bird’s Eye View

Mick questioned our statements about depth perception in birds.

In last month’s special issue devoted to the Avian Phylogenetics Project, we talked about the classification of falcons, and whether they should be classified with hawks or parrots. As part of that discussion we said:

Hawks have eyes set close together, giving them binocular vision, which gives them depth perception. They need depth perception because they are birds of prey, which swoop down on poor defenseless animals and eat them.

Parrots have eyes on the sides of their head, giving them great peripheral vision (so they can see predators coming), but no depth perception.

Mick took issue with that statement.

Hello David

Falcons, buzzards, golden eagles and maybe other raptors have eyes on the sides of their heads. These eyes are nearer the front of the head than parrots’ eyes are. I stood within yards of a wild falcon that was on a dead pheasant. The falcon turned its head to one side, I believe to look at me. I’d say that such a bird has a compromise between both worlds, some depth perception coming where the eyes have a slight overlap.

I haven’t tested this, so I won’t say I must be right. Neither do I think that golden eagles are more like parrots than owls.

Regards
Mick

As soon as I read that, I realized that I had fallen into the same trap evolutionists do. I believed parrots don’t have depth perception just because my teachers said so, and I didn’t question it. I was taught in school that predators evolved close-set eyes to help them hunt. Their prey evolved widely separated eyes as a defense in the so-called “evolutionary arms race.”
Mick’s belief is based on actual observation.

Setting aside the question of whether eye placement evolved accidentally, or was the result of an intentional design, we need to address the question of whether or not our statements about depth perception and peripheral vision are true or not.

Fact Checking

Clearly, parrots must have depth perception. If they didn’t they would not be able to land on a perch. I have personally seen parrots land on a perch (at trained bird shows), so I know it is true. It isn’t just something my teacher told me a long time ago. So, our statement last month about parrots not having depth perception is certainly wrong.

To verify eye placement, I turned to my trusty old Field Guide to the Birds of North America (Second Edition 1987). In all of the pictures of owls in that book you can see both of their eyes because the owls are pictured looking right at you. All the sparrows and finches and doves, *et cetera*, are shown in profile. The hawks, eagles, and kites, are shown in partial profile. Their eyes are on the side of its head; but their eyes are closer to its beak, and their eyes do seem to be facing at least partially forward. There appears to be a small region directly in front that is in the fields of view of both eyes.

The Field Guide (published by those militant evolutionists, the National Geographic Society) includes falcons in the same section with hawks, confirming the fact that falcons used to be believed by evolutionists to be very similar to hawks.

Since parrots are primarily South American birds, one might not expect to find any pictures of them in the Field Guide to the Birds of North America; but there were some! On page 230 the Field Guide said, “Most of the many parakeets and parrots seen in the wild in North America are escaped cage birds. We show here the species that have established small populations or are seen as *vagrants from Mexico*.” (Here’s a news flash for the National Geographic Society—geographically, Mexico is in North America. Birds native to Mexico are legal residents—not vagrants! ☺) The pictures showed that the budgerigar (the common parakeet) does, in fact, have eyes on the sides of its head.

Depth Perception

Let’s ignore what my evolutionary teachers told me about depth perception, and consider what I actually know about depth perception.

My parents had parakeets when I was a child. Sometimes our birds got out of their cage and flew around inside the house. I don’t remember them ever accidentally crashing into lamps or walls with patterned wall paper; but they did sometimes crash into the picture window or uniformly colored walls. Crashing into a window is easily explained because glass is basically invisible.

Why could our parakeets apparently not see uniformly colored painted walls; but could see wall papered walls? I believe it is because there are two ways to perceive depth, neither of which works very well on solid colors.

You are probably familiar with binocular depth perception because that’s how the View-Master stereoscopic viewer 4 works. Your two eyes are individually shown images of one scene taken from two different angles. Objects in the distant background are at the same angle from each eye. Objects in the near foreground are at different angles. Your brain computes distance based on the difference in angles. At some point in your life you must have held a finger six inches in front of your face and watched it apparently bounce back and forth as you closed one eye or the other, so you must be familiar with the effect.

A few years ago “random dot stereograms” were a popular fad. 5 They were usually published in books, or on calendars. If you could force your eyes to look past the picture, suddenly a 3-D image would appear. (Some people found it easy to do. Other people never could do it.) It worked because it fooled your brain into perceiving the dots as being at different distances.

This first type of depth perception, binocular (that is, *stereoscopic*) depth perception, depends upon two views of the same scene taken from different locations at the same time. It requires two optical sensors.

There is a second type of depth perception which requires only one optical sensor. 6 Parakeets might use this technique for determining the distance to objects.

Here’s the difference between the stereoscopic depth perception used by a View-Master and depth perception in a synthetic aperture radar. The View-Master uses two cameras in different locations taking a picture of the same scene at the same time. The synthetic aperture radar uses one sensor to create a picture of a scene, then moves to a different location and creates a second picture of the same scene a

short time later.

In both methods, two pictures of the same scene are taken. The difference is that, in the first method, both pictures are taken at the same time by two cameras in different places. In the second method, both pictures are taken by the same camera at different times from different places.

Both methods depend upon differences in images. Two pictures of a uniformly colored wall taken from two different locations (either at the same time, or sequentially) will be identical. That’s why our parakeets couldn’t tell how far they were from a wall (unless the wall had patterned wallpaper on it).

Evolutionary Implications

So, what does all this have to do with evolution? Well, an owl clearly uses binocular (stereoscopic) vision because it has two eyes on the front of its flat face, giving it two simultaneous images of what is in front of it. The owl’s brain must have an image-processing algorithm (similar to humans’) that correlates simultaneous images to determine differences in angles, and then computes distance based on angular differences. Owls (and people) can determine distance while sitting still.

A parakeet can only see a scene with one eye at a time. Therefore, it has to move to a second location to see the scene with that same eye. Then, it has to correlate the two images to determine the difference in angles and compute the distance. But, unlike the owl, in order to do this, the parakeet has to know how far it moved between images. That means the parakeet has to know how fast it was moving, and how much time elapsed between images. It must also remember the first image in order to make the comparison.

As an engineer who formerly designed self-guided weapons and proximity fuzes, I am impressed by the image processing in an owl’s brain, and even more impressed by the image processing in a parakeet’s brain. If eagles and hawks have slightly overlapping fields of view, and use a combination of both methods of depth perception, that’s really amazing!

Learn For Yourself

Here’s an idea for a science fair project to learn about depth perception. It compares stereoscopic depth perception with synthetic aperture depth perception.

In a garage, gymnasium, or other large space, build a three-sided box with a lattice top similar to the one shown in the sketch below using four large plywood boards and whatever external bracing you need to make it stand up safely.

For the roof you can use commercially available lattice like the one in the sketch, or just several thin parallel boards, from which you can hang things. (Use invisible fishing line, so the subject cannot tell how far back they are hung by following the string up to the lattice. Be sure the subject can’t cheat by looking at shadows on the floor, either.) Paint the two back plywood panels a solid color. When the paint dries, put vertical strips of contrasting colored tape a few inches apart on the two background panels.

Hang four different objects at different distances from the back panel and ask the test subjects to tell you which one is the closest, second closest, third closest, and farthest away. (Don’t use identical objects because the closest one will appear to be the largest and spoil the test.) Have the subjects do this at several distances from five feet to very far away. Repeat the process with several people to determine how close the average person has to be to judge the distances correctly. (If you want to be sneaky, make one of the objects a ping pong ball painted like a baseball, to see if the presumed size affects the perceived depth.) The purpose of this test is to see how far away people can accurately determine differences in distance using normal binocular vision. The remaining tests should all be done at this distance.

Do a second series of tests with subjects who have one eye covered. Since they have no stereoscopic depth perception they will sometimes guess correctly, and sometimes not. This is the second control test to measure the average error rate at the distance determined by the first test.

As soon as the subjects have finished the second test, let the subjects move laterally left and right. Allow them to change their answers to see if they can more accurately judge distance using the synthetic aperture method.

In the fourth test, remove all the colored tape and repeat the third test to see if it makes a difference if the back wall is a solid color or has vertical strips on it.

Can people learn to judge distance using just one eye by moving laterally? If so, do they require a patterned background?
Most importantly, will you get a better grade with this project than the kids who just make a baking soda volcano? ☺

Seriously, science is fun! Unfortunately the joy of learning things through experimentation has been replaced by unquestioned acceptance of whatever the teacher says. We hope this science fair project will encourage students to discover the joy of learning things for themselves.

The theory of evolution isn’t just unscientific—it is anti-science. Evolutionists encourage students to ignore actual observation and common sense if those observations conflict with the philosophy of someone in authority. If they say hummingbirds evolved from dinosaurs, and dragonflies are closely related to lobsters, they expect you to believe it without question.

Yes, the chemical composition of the DNA molecule was determined scientifically. Real science was used to determine the function of particular genes. But the conclusions about how and why those genes came into existence are not scientific. Those conclusions are nothing more than speculations that change from time to time because they aren’t absolute truth.

Intentional Ignorance

Sometimes it is really hard to play dumb.

We get hate mail from Sam from time to time. We printed excerpts from some of them in June and July of 2014. Here’s what he wrote to us this month:

Still churning our lies and ignorance, i [sic] see.

Why are so many YEC [Young Earth Creationist] engineers so clueless about science?

We tried to get him to tell us what we lied about in our January issue. Here is his reply:

You are a few centuries behind in your pretend science knowledge.
I mean, how ignorant does an engineer have to be to actually claim that the changing of brackets over time is just like evolution? Stupid.

Please compare this email to the other email in this newsletter. Mick pointed out our factual error about depth perception in parrots. We were glad to correct our error.

Sam, on the other hand, could not find anything factually wrong with our last newsletter, not even our error about depth perception. Either he was unable to understand what we wrote, or he intentionally misrepresented our position by saying we “claim that the changing of brackets over time is just like evolution.” We didn’t make that claim, as you can see for yourself by reading our last newsletter. We never compared the evolution of the mythical tree of life to the evolution of life. That claim is just as foolish as when evolutionists claim that the evolution of the automobile proves that evolution happens.

We believe that Sam is feigning ignorance on purpose because he doesn’t want to admit he could not find any factual errors in any of our newsletters. However, we must consider the possibility that he really is that ignorant. Perhaps we did not make our point as clearly and simply as people like Sam need in order for them to understand it. So, let’s try again.

Our point in comparing the mythical tree of life to the Periodic Table of the Elements is that the mythical tree of life is a reflection of opinion; but the Periodic Table is a representation of actual fact. The Periodic Table does not change because the laws of nature don’t change. The chemical properties of elements are the same yesterday, today, and tomorrow. These chemical properties were discovered, and confirmed over and over, by many scientific experiments.

The mythical tree of life does evolve (if we dare use that term ☺) as popular opinions change because the tree of life doesn’t really exist. It isn’t rooted in an unchangeable law of nature. It is a fairy tale. It is imaginary. Every time a new fact is discovered that doesn’t fit the current evolutionary fairy tale, the fairy tale is replaced with a new one. The tree of life is a philosophical construct, not a scientific representation of facts.

As we reported last month, the Avian Phylogenetics Project uncovered some troubling (for evolutionists) facts. Their genetic discoveries were not consistent with the prevailing evolutionary theory. So, evolutionists had to change the supposed evolutionary relationships between various birds on paper. This was not scientific advancement. It was just an attempt to rationalize away troubling facts.

It was not an example of the “self-correcting nature of science.” The proper correction would have been to recognize that the theory is fundamentally wrong, and reject the theory completely. Instead, they just tried to put lipstick on a pig, and say it is a chorus girl.

Sam is the one who is clueless about science because he thinks anything a scientist says is scientific.
This month’s website review looks at a site that provides short articles on the topic of creation and evolution. To find the articles, select the Home link found on the main page of the website.

The website begins by asking the question “Creation and Evolution: Is there a Conflict?” What follows is a discussion of micro versus macro evolution. It is important to understand the difference between these terms when reading material regarding the creation versus evolution controversy. Here the website author provides definitions for both micro and macro evolution, and states that “for simplicity, macro evolution in this website will be referred to as evolution”. In the beginning and throughout the complete website, the author provides footnotes to additional reference material.

The next section of the website provides “Creation Versus Evolution Tabular Summaries.” Here you will find tables that summarize: 1) What do the Bible, Darwin’s “Descent with Modification”, and Neo-Darwinists’ views say about origins? 2) 20 Origin Facts Check; 3) 23 Myths of Evolution; and 4) Science and the Age of the Earth.

After the above-mentioned material, you will find the following current short articles: 1) Are Special Creation and/or Evolution Science? 2) The Cases for Evolution and Special Creation; 3) Evolution: Falsified? 4) Intelligent Design; 5) Origins and Life: Conclusions are Not Objective. A summary of the article and then a link to more material is provided.

The reader of this web site should find many topics to explore. It is important to understand that as mentioned in the last article “how you look at origins and life is the result of the lenses you look through.” There are indeed many different lenses such as the Biblical creation lens, the atheistic lens, the theistic evolution lens, and probably others. We need to understand that many of the problems that arise when discussing creation and evolution are not about science, but about faith.

Beside the short articles on creation and evolution, you will find Nature Photo Galleries on this site. Interesting observations are made regarding some of the photos.